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Abstract— For reconstructing volume of filtered projection data
a parallel computing algorithm is proposed which suits spiral
cone beam CT access for improvement of speed with high end
processor. This work uses phantom data to achieve higher speed
by accessing memory many times here the work is carried frame
by frame as the pixel data arrives from filtered back projection;
Interpolation is used for dedicated volume data which is decided
by the coordinates of neighborhood pixels. Image quality is
achieved in real time to refine artifacts by using parallel
computing algorithm, experiment results shows the reduction of
memory accessing times from many to one.
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| INTRODUCTION

Digital image reconstruction is a robust by means by which
the underlying images hidden in blurry and noisy data can be
reveled [14]. The main challenge is sensitivity to measure
noise to the input data, which can be magnified strongly,
resulting in large artifacts in the reconstructed image .Many
imaging techniques are based on reconstructing an image
from data that can be interpreted, either directly or after some
preprocessing, as a set of projections of the imaged object.
The mathematical foundation is provided by the Radon
transform (RT) which computes 1-D projections of a 2-D
data at different view angles. Different from X-ray
radiograph, the inner structure of the FOV can be detected
with CT, or the CT image has much better space resolution
than tradition X-ray radiograph [14]. CT has gain widely use
as a tool not only in medical as medical imaging, noninvasive
diagnostics and surgical planning but also in industry for
nondestructive inspection[15]. In CT imaging, for example,
the data is obtained by passing a set of narrow X-ray beams
through the scanned object and collecting their intensities
using an array of sensors. The acquired data represents the
Radon transform of the cross-sectional absorption densities
that form the image [1]. Munson et al. [2] showed that the
data collected by the SAR, after demodulation and low pass
filtering, represents the Fourier transform of the projections
obtained from the reflectivity density of the targeted ground
patch.

X-ray computed tomography is a technique closely combined
with the X-ray radiation. With the technique, the inner
structure of an N dimensional object can be reconstructed
from the N -1 dimensional projections [4] Different from X-
ray radiograph, the inner structure of the FOV can be
detected with CT, or the CT image has much better space
resolution than tradition X-ray radiograph[12].

However most popular in practice are methods based on the
back projection (BP) operation which reduces the distortion
by avoiding the interpolation step. The approach is also more
suitable to handle other problems such as wave front
curvature effects in SAR imaging the image reconstruction
algorithm for the spiral cone beam CT can be divided into
two categories, the approximate and the exact. Typically, the
former one contains various kinds of the FDK-type algorithm
transformed from the classic FDK-algorithm for circular cone
beam CT which is widely used in the clinic now a days . The
advantage of the FDK algorithm includes its fast computing
speed and good image quality. But the disadvantage is also
obvious, that is the cone beam angle could not be too big, or
the artifact becomes very serious. Nowadays, the spiral cone-
beam CT is not only the mainstream for its really fast
scanning speed and the ability to produce truly 3D image and
[5,6]. In 2002, katsevich proposed the first theoretical exact
reconstruction formula for spiral; cone beam CT [7,8]. It is of
truly FBP type with one dimensional shift invariant filtering,
as a result the computation is more efficient than the random
transform based reconstruction algorithm .It has feature of
solving the long object problem and uses the data inside the
Tam-Danielson window[9] and some more outside the
window. Though it’s numerous advantages, the bottle neck is
still obvious for its intensive computation. After the formula
came out, several numerical study and implementation for the
formula has been reported

In 2007, Jiang proposed a fast algorithm for katsevichs
formula, the cone beam cover method [10] different from the
pi —line method; the new method adopts the new concept
cone beam cover. The method can update the voxel defined
in the cone beam cover for each projection frame, so a
parallel computing can be achieved .then, and then implement
the new method with a Linux cluster [12] .Each frame
occupies a computation node

In this paper, we focus the back projection (BP) operation the
computational bottle neck [13] of the FBP algorithm.

Il . BACKGROUND
An essential step in image reconstruction is back projection,
which is the ad joint to forward Projection process that forms
the projections of the object. Figure 1 shows the back
projection along a fixed angle, @ Conceptually, back
projection can be described as placing a value of p(s,@) back
into an image array along the appropriate LOR, but, since the
knowledge of where the values came from was lost in the
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projection step, the best we can do is place a constant value
into all elements along the LOR.

* L 2
4 \ 5
\>/’ :
// T ! Backprojection along all
- LORs at a fixed ¢.
_ // -
Ry
R L L - \
\ L '.
— - L -
‘
b 1 4
iy
blx.v:)

.
_ 1
.1‘

Fig 1. Back projection b(x,y,d), into an image reconstruction
array of all values P(S,0) for a fixed value of @

One might assume that straight back projection of all the
collected projections will return the Image, but this is not the
case due to the oversampling in the center of the Fourier
transform. In Other words, each projection fills in one slice
of the Fourier space resulting in oversampling in the
center and less sampling at the edges. For example, if we
perform back projections at only two angles, say @1 and @2
and examine the Fourier transform of the result we see that
the contribution at the origin is doubled while there is only
one contribution at the edges of the field of view. Another
way of understanding this oversampling in the space domain
is with the forward projection of a single point source. If we
simply back project the point source projections, the image
would be heavily blurred since the projections are added back
to the entire LOR from which they came. The oversampling
needs to be re-weighted, or ‘filtered’, in order to have equal
contributions throughout the field of view
A. filtered-back projection (fbp) reconstruction
Our goal is to compute f (x, y) from p(s, @) . After back
projection, the oversampling in the center of Fourier space
needs to be filtered in order to have equal sampling
throughout the Fourier space. Basically, the Fourier transform
of the back projected image must be filtered with a ‘cone’
filter
v=,/vZ + v} this cone filter accentuates values at the edge
of the Fourier space and de accentuates values at the center of
the Fourier space. This operation is summarized in

F (uy,vy) = B (U, vy)
Where B (vx,vy) is the 2-d Fourier transform of the back
projected image and F(vy, v,) is the 2-D Fourier transform of
the back projection-filtered image. The final step is the
inverse Fourier transform of F(v,,v,) to obtain the image
F(x,y) This is known as the back projection-filtering (BPF)
image reconstruction method, where the projection data are
first back projected, filtered in Fourier space with the cone
filter, and then inverse Fourier transformed. Alternatively the

filtering can be performed in image space via the convolution
of b(x, y) with F; 1 {v} A disadvantage of this approach is
that the function b(X, y) has a larger support than f (X, y) due
to the convolution with the filter term, which results in
gradually decaying values outside the support of f (X, y) .
Thus any numerical procedure must first compute b(x, y)
using a significantly larger image matrix size than is needed
for the final result. This disadvantage can be avoided by
interchanging the filtering and back projection steps as
discussed next.
B. Reconstruction by filtered-back projection (FBP)
If we interchange the order of the filtering and back
projection steps ,we obtain the Useful filtered-back projection
(FBP) image reconstruction method:

F(x,y)=f; p" (s,0)d0
Where the 'filtered' projection, given by

PF(S,9) = F H{lus| Fu{P(S, ®)}}

Can be regarded as pre-corrected for the oversampling of the
Fourier transform of f(x,y). The one dimensional 'ramp' filter
lus| is a section through the rotationally symmetric two-
dimensional cone filter. An advantage of FBP is that the ramp
filter is applied to each measured projection, which has a
finite support in s, and we only need to back project the
filtered projections for |s| less than the radius of the field of
view. This means that with FBP the image can be efficiently
calculated with a much smaller reconstruction matrix than
can be used with BPF, for the same level of accuracy. This is
part of the reason for the popularity of the FBP algorithm

I1l. METHODS
A. FILTERED BACKPROJECTION ALGORITHMS
The Radon transform (RT) represents a set of parallel line
integral projections of a 2-D function f(x, y) at different
angles 0. The continuous Radon transform is defined by
F(r,0) = [[ f (x,y)8(r — xcos8 — ysin®) dx dy
Where r and 0 are polar coordinates and 9 is the unit impulse.
The projections " f(r, 0) are also referred to as the data as
Sinograms. In their original form, filtered back projection
(FBP) algorithms are
Based on the well-known inversion formula for the RT:

fx.y)=6f,0), .
f(p,0) = F* loy| B (16).

Here F{( wy, 8) = F f(r,0) represents a 1-D Fourier
transform in the variable r, and B is the continuous back
projection operator

Fxy) =B f(p,0) = fonf(xcose + ysinf) do
The projections f(r, 0) are first filtered using the ramp filter
|or| and then back projected to reconstruct the image.
B. DISCRETE DIRECT BACK PROJECTION.
In practice, the number of projections P and the sampling
distribution are determined by the data acquiring equipment,
and the reconstructed image is discrete. We will assume that
the projection angles 0 are evenly distributed in the interval
[0, m) and that all images are square with N x N pixels. To
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implement the FBP algorithm on a computer, the back
projection operation is discretized and the ramp filter is
windowed and sampled. The discrete back projection is
performed for each pixel f(m, n) as a sum of projected values
over all angles 6:

F(m,n)=) f(mc059+nsin9, 0).

Interpolation with a kernel ¢ (p) in the radial direction is

required to compute sampled f at non-integral values. Better
approximation to the continuous back projection can be
achieved by introducing the image sampling operator to
model the physical properties of the sensing equipment [3]. In
our implementation, however, we use the ideal sampling
kernel.

IV. PRACTICAL RECONSTRUCTION APPROACH
A. THE SPIRAL CONE-BEAM CT GEOMETRY

Figure 1. The geometry of spiral cone beam CT
The geometry of the spiral cone-beam CT is shown in Fig. 1.
Here, X is the voxel to be reconstructed. In the Cartesian
coordinate system O-XYZ. Y Denotes the X-ray source
position which can be denoted as
Y(S) = [R cos(s) . R sin(s) ,%S]T
Where s is the rotation angel of the source and R is the radius
of the support cylinder.
Then, the unit vector pointing from Y(S) to ¥ is :
AL x—y(s)
,3 (X ) ) =T =<
X —y(s)l
Now, a rotating coordinate is adopted at source position Y(S)
with its two axis’s €, and &, parallel
To the detector plane while the axis "W e perpendicular to the
detector plane, defined by:

é, = [—sin(s), cos(s),0]"
é, = [—cos(s), —sin(s),0]"

é, =10,0,1]7

On the detector plane, a third coordinate is defined with
origin at the projection of the X-ray source on the detector
plane and the two axis’s parallel to .é, and €&, In this way,
the detector plane is expanded by the two vectors.

B. Proposed algorithm:
Parallel back projection
Let’s make the following definition

20 S\ An
FPs = [ 3 -DA(Y(s).0(Xs, y))dy
Obviously, s FP is the filtered projection data at source
position s . Furthermore, let’s make the
Following definition:

=N 1
s =iz 5 @t s

Then,

F(x) =

1 1 1 R .

ELPIXMFPSdS = E(Sf(x)sb Fo Sf(x)st)
Here is the 7t- line decided by the voxel .

we can see that for each source positions s on the

exists a 5f(X). we say that
f(x) is updated at source positions s by 8f()s.

there

x

Figure 3. The geometry for the new algorithm

As shown in Fig. 3., let X;to be the voxels on the ray
connecting source S and voxel ;. Obviously,
the following equation holds:

1

M(xi)s = w5 FFs

According to the sufficient condition of © -line, we can make
the projection not at the source on the

Parametric  interval to be 0.Then, the following equation

holds
1

3f(X;)s ={||:2—7s)u FpPg, if selp,
0

else
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This indicates that if the projection data of a ray is given, then
all the voxels on the ray can be updated.
Here, we define the voxels on a ray to be:

X=(X, IX,eRay? ,S€lp;, P € FP}
Where Ray! connects sourse s and projection FPg . so X is

the set of the voxels on Ray?
Now

)=
Af(x)= [l2c— J/(S)II
Then the exact reconstruction formula can be expressed as:

1
f(X):E(6f(X)Sb+ ...... o f(X)Sr = pyn fIPIZmFPSd
Eqn.updates the voxels on the ray connecting source S and
projection FPg If we define FP to

be the set of all the projection at source S, S Ray to be all the
ray pass Ray; X to be all the voxels on

s Ray . Then we come to the parallel reconstruction formula:

F(Xs) = 5= (8f (Xs)sp + e - 8f (Xs)s, =
~— FPds

Ef Plx; | xz-7 ()|
We can see from the equation that the voxels in S X can be
updated if one frame of filtered projection arrives. When the
next frame of filtered projection arrives, another set of s X
can be updated.

The voxel to be updated has the following features:

(0 The voxel is in the support cylinder

(2) the source s is on the m parametic interval decided by
voxel

V. THE EXACT RECONSTRUCTION FORMULA
The exact formula proposed by Katsevich can be expressed
as following:

> 1 1 2m 9
f(x)_-zn.f IPI ")?_)7(5)” fo aQ

2 DEEFS),0)) |gs =

smy

Here Df(y, 5) is the projection of the reconstructed object .
Ip; is the w parametric interval.

From the equation we can see that the projection data is first
filtered, then the filtered projection data is Back projected to
form the attenuation image. It’s of truly FBP type.

The formula can be solved by the following five steps:

(1) Derive the projection data Df(y,0) using chain rule

9:65:0w)2-DF (70, 85%7)) 1

1 P afu + D? afuvagf|
siny Vaq D odubD a, %

2 Length weight correction

g2(s,u,w) = \/ﬁgl(syugw)

3) Rebinning

Define r to be the maximum[15] radius of the object a,, =
arcsin(r/R), using linear interpolation to all the

Vo€ [ -n/2-a,, g + an,]
93(s,u, lp) - 9> s uw(w,¥)
Here wy, (u, %)= %( %)
4) IDfiltering
9a(s,u, lp):ffn ku(u —v) gs(s, u, wi(u, ¥)du

tan¥ D

5) Rebinning
gs(s,u,w) =g, (s, u, ¥ (u, w))

Here @ (u,w) is th one with the least resolution value,
satisfyig

—Dn u
Wk = % ( tan!pD)
(6) BACK PROJECTION

f(X) — be gS(SvU*vW*) dS

St v*(s,x)

VI.SIMULATION RESULTS

File Edit View Inser Tool: Deskto Window Helgp ~
Dadde |k [RRTD A-

CT image

Figl:Shows the CT image

[}
]
i

Fig 2:The sinogram image acqulred from CT

B Fioure 3 N = =
File Edi Viev Inser Tool Desktc Windc Hel} ~

DSBS [k (RADL- »

Simple Projection

Fig 3 : The simple projection image
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Fig 5: The construction of back projection image
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Fig 6: The back projection in action

VII. CONCLUSION

The implementation of the exact reconstruction algorithm for
spiral cone-beam CT is quite time consuming for its intensive
computation. Among them, the frequent access of the
memory is quite a bottle neck to improve the performance. In
this paper, we propose a parallel back projection algorithm
that can reduce the memory accessing times from many times
down to once. As some certain attenuation value can be
updated once a filtered back projection data arrives, a
pipeline can be achieved for the reconstruction. From the
experiment results, we can see that the image quality
reconstructed by the new algorithm is satisfactory. The new
method may provide some suggestions to engineers or
researchers intending to implement the exact reconstruction
algorithms in hardware. Though, there are some further
works to be done. The most important one is to develop some
more interpolation methods for the filtered projection data,
and find some new parallel algorithm as the artifact can be
greatly reduced if proper interpolation can be employed.
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